
CrazyIvan Documentation
Release 1.0.0

AO

Jul 21, 2018

Contents:

1 Docker 3

2 Using the Latest Release 5

3 Building from Source 7

4 Configuration 9

5 API Overview 13

6 Field Mapping 17

7 Message Types 19

8 Appendix A: JSON Message Samples 21

9 Appendix B: Error Codes 27

10 Deployment 29

11 Architecture 31

12 Design 33

13 Object Change Streams 35

14 Dependencies 37

15 Developer Notes 41

16 Automated Testing 43

17 Crazy Ivan 45

i

ii

CrazyIvan Documentation, Release 1.0.0

Go Home

Contents: 1

CrazyIvan Documentation, Release 1.0.0

2 Contents:

CHAPTER 1

Docker

The easiest way to get started with CrazyIvan is with Docker

If you do not have Docker installed, please visit the link above to get setup before continuing.

The first thing we need to do is setup the Docker Network that will allow us to communicate between our containers:

docker network create dvs

Before we can start CrazyIvan, we need to have a few other programs running first. Luckily, these can all be setup
with Docker as well:

docker run -d --name=registry --network=dvs consul

docker run -d --publish=7474:7474 --publish=7687:7687 --env=NEO4J_AUTH=none
--volume=$HOME/neo4j/data:/data --network=dvs --name=database neo4j

docker run -i -t -d -p 2181:2181 -p 9092:9092 --env ADVERTISED_PORT=9092 --env
ADVERTISED_HOST=queue --name=queue --network=dvs spotify/kafka

This will start up a single instance each of Neo4j, Kafka, and Consul. Consul stores our configuration values, so we’ll
need to set those up. You can either view the Consul Documentation for information on starting the container with a
Web UI, or you can use the commands below for a quick-and-dirty setup:

docker exec -t registry curl -X PUT -d 'neo4j://graph-db:7687' http://
localhost:8500/v1/kv/ivan/DB_ConnectionString

docker exec -t registry curl -X PUT -d 'queue:9092' http://localhost:8500/v1/
kv/ivan/KafkaBrokerAddress

docker exec -t registry curl -X PUT -d 'True' http://localhost:8500/v1/kv/
ivan/StampTransactionId

docker exec -t registry curl -X PUT -d 'Json' http://localhost:8500/v1/kv/
ivan/Data_Format_Type

Then, we can start up CrazyIvan:

3

https://docs.docker.com/get-started/
https://www.consul.io/intro/getting-started/ui.html

CrazyIvan Documentation, Release 1.0.0

docker run --name crazyivan --network=dvs -p 5555:5555 -d aostreetart/
crazyivan -consul-addr=registry:8500 -ip=localhost -port=5555
-log-conf=CrazyIvan/log4cpp.properties

This will start an instance of CrazyIvan with the following properties:

• Connected to network ‘dvs’, which lets us refer to the other containers in the network by name when connecting.

• Listening on localhost port 5555

• Connected to Consul Container

We can open up a terminal within the container by:

docker exec -i -t crazyivan /bin/bash

The ‘stop_crazyivan.py’ script is provided as an easy way to stop CrazyIvan running as a service. This can be executed
with:

python stop_crazyivan.py hostname port

For a more detailed discussion on the deployment of CrazyIvan, please see the Deployment Section of the documenta-
tion.

4 Chapter 1. Docker

CHAPTER 2

Using the Latest Release

In order to use the latest release, you will still need to start up the applications used by CrazyIvan, namely Neo4j,
Kafka, and Consul. This can be done using the docker instructions above, or by installing each to the system manually.
Instructions: * Neo4j * Consul

Then, download the latest release from the Releases Page

Currently, pre-built binaries are available for:

• Ubuntu 16.04

• CentOS7

Unzip/untar the release file and enter into the directory. Then, we will use the easy_install.sh script to install CrazyIvan.
Running the below will attempt to install the dependencies, and then install the CrazyIvan executable:

sudo ./easy_install.sh -d

If you’d rather not automatically install dependencies, and only install the executable, then you can simply leave off
the ‘-d’ flag. Additionally, you may supply a ‘-r’ flag to uninstall CrazyIvan:

sudo ./easy_install -r

Once the script is finished installing CrazyIvan, you can start CrazyIvan with:

sudo systemctl start crazyivan.service

The ‘stop_crazyivan.py’ script is provided as an easy way to stop CrazyIvan running as a service. This can be executed
with:

python stop_crazyivan.py hostname port

Note: The CrazyIvan configuration files can be found at /etc/crazyivan, and the log files can be found at
/var/log/crazyivan.

5

https://neo4j.com/developer/get-started/
https://www.consul.io/intro/getting-started/install.html
https://github.com/AO-StreetArt/CrazyIvan/releases

CrazyIvan Documentation, Release 1.0.0

6 Chapter 2. Using the Latest Release

CHAPTER 3

Building from Source

The recommended system for development of CrazyIvan is either Ubuntu 16.04 or CentOS7. You will need gcc 5.0 or
greater installed to successfully compile the program.

git clone https://github.com/AO-StreetArt/CrazyIvan.git

mkdir crazyivan_deps

cp CrazyIvan/scripts/linux/deb/build_deps.sh crazyivan_deps/build_deps.sh

cd crazyivan_deps

./build_deps.sh

You will be asked once for your sudo password.

cd ../CrazyIvan

make

This will result in creation of the crazy_ivan executable, which we can run with the below command:

./crazy_ivan

When not supplied with any command line parameters, CrazyIvan will look for an ivan.properties file and
log4cpp.properties file to start from.

You may also build the test modules with:

make tests

In order to run CrazyIvan from a properties file, you will need:

• You will also need to have a Neo4j Server installed locally. Instructions can be found at https://neo4j.com/
developer/get-started/

Continue on to the Configuration Section for more details on the configuration options available when starting CrazyI-
van.

7

https://neo4j.com/developer/get-started/
https://neo4j.com/developer/get-started/

CrazyIvan Documentation, Release 1.0.0

8 Chapter 3. Building from Source

CHAPTER 4

Configuration

4.1 Properties File

Crazy Ivan can be configured via a properties file, which has a few command line options:

• ./crazy_ivan - This will start Crazy Ivan with the default properties file, ivan.properties

• ./crazy_ivan -config-file=file.properties - This will start Crazy Ivan with the properties
file, file.properties. Can be combined with -log-conf.

• ./crazy_ivan -log-conf=logging.properties - This will start Crazy Ivan with the logging prop-
erties file, logging.properties. Can be combined with -config-file.

The properties file can be edited in any text editor.

4.2 Consul

Crazy Ivan can also be configured via a Consul Connection, in which we must specify the address of the consul agent,
and the ip & port of the Inbound ZeroMQ Connection.

• ./crazy_ivan -consul-addr=localhost:8500 -ip=localhost -port=5555 - Start Crazy
Ivan, register as a service with consul, and configure based on configuration values in Consul, and bind to an
internal 0MQ port on localhost

• ./crazy_ivan -consul-addr=localhost:8500 -ip=tcp://my.ip -port=5555
-log-conf=logging.properties - Start Crazy Ivan, register as a service with consul, and con-
figure based on configuration values in Consul. Bind to an external 0MQ port on tcp://my.ip, and configure
from the logging configuration file, logging.properties.

We can also use both a properties file and a Consul connection, in which case the properties file is used to define the ip
and port of the inbound ZeroMQ connection, while Consul is used for registration and all other configuration retrieval.

• ./crazy_ivan -consul-addr=localhost:8500 -config-file=file.properties

When configuring from Consul the keys of the properties file are equal to the expected keys in Consul.

9

tcp://my.ip

CrazyIvan Documentation, Release 1.0.0

4.3 Logging

The Logging Configuration File can also be edited with a text file, and the documentation for this can be found [here]
(http://log4cpp.sourceforge.net/api/classlog4cpp_1_1PropertyConfigurator.html). Note that logging configuration is
not yet in Consul, and always exists in a properties file.

Two logging configuration files are provided, one for logging to the console and to a file (log4cpp.properties), and
another to log to syslog and to a file (log4cpp_syslog.properties). Both show all of the logging modules utilized by
Crazy Ivan during all phases of execution, and all of these should be configured with the same names (for example,
log4cpp.category.main).

Crazy Ivan is built with many different logging modules, so that configuration values can change the log level for
any given module, the log file of any given module, or shift any given module to a different appender or pattern
entirely. These modules should always be present within configuration files, but can be configured to suit the particular
deployment needs.

4.4 Startup

Crazy Ivan can be started with an option to wait for a specified number of seconds prior to looking for configuration
values and opening up for requests. This is particularly useful when used with orchestration providers, in order to
ensure that other components are properly started (in particular, in order to allow time for Consul to be populated with
default configuration values).

• ./crazy_ivan -wait=5 - This will start Crazy Ivan with the default properties file, and wait 5 seconds
before starting.

4.5 Configuration Key-Value Variables

Below you can find a summary of the options in the Properties File or Consul Key-Value Store:

4.5.1 DB

• DB_ConnectionString - The string used to connect to the Neo4j instance (example:
neo4j://neo4j:neo4j@localhost:7687)

4.5.2 0MQ

• 0MQ_InboundConnectionString - The connectivity string for the inbound 0MQ Port

4.5.3 Kafka Connection

• KafkaBrokerAddress - The address of the Kafka connection to monitor

4.5.4 Behavior

• StampTransactionId - True to stamp Transaction ID’s on messages, False if not. Transaction ID’s are passed on
Inbound Responses and Outbound messages, in order to link the two together.

• Data_Format_Type - JSON to accept JSON messages, protobuf to accept protocol buffer messages

10 Chapter 4. Configuration

http://log4cpp.sourceforge.net/api/classlog4cpp_1_1PropertyConfigurator.html

CrazyIvan Documentation, Release 1.0.0

Go Home

4.5. Configuration Key-Value Variables 11

CrazyIvan Documentation, Release 1.0.0

12 Chapter 4. Configuration

CHAPTER 5

API Overview

The CrazyIvan API utilizes either JSON or Protocol Buffers, based on what the server is configured to process. In
either case, the field names and message structure remains the same. This document will focus on the JSON API, but
with this knowledge and the DVS Interface Protocol Buffer files, the use of the Protocol Buffer API should be equally
clear.

Response Messages follow the same format as inbound messages.

To start with, here is an example JSON message which will create a single scene, and register a user device to it:

{

“msg_type”:4,

“transaction_id”:”123465”,

“scenes”:[

{

“key”:”jklmnop”,

“name”:”Test Scene 10”,

“latitude”:124.0,

“longitude”:122.0,

“distance”:100.0,

“region”:”Test Region”,

“assets”:[“Test Asset 1”, “Test Asset 2”],

“tags”:[“Test Tag 1”, “Test Tag 2”],

“devices”:[

{

“key”:”Ud_132”,

“transform”:{

13

CrazyIvan Documentation, Release 1.0.0

“translation”:[1.0,1.0,1.0],

“rotation”:[1.0,1.0,1.0]

}

}

]

}

]

}

Let’s take a look at the individual fields.

5.1 Scene List

The Scene List is the highest level wrapper in the API. It only contains 5 keys, one of which is an array of scenes.

• msg_type – 0 for create scene, 1 for update scene, 2 for retrieve/query scene(s), 3 for delete scene, 4 for device
registration, 5 for device de-registration, and 6 for device alignment. The message type applies to all objects in
the objects array.

• transaction_id – An ID to distinguish a transaction within a larger network of applications

• scenes – An array containing scenes

• err_code – Integer error code, full list of values can be found below in the appendix

• err_msg – A string error message, containing a human-readable description of the issue

5.2 Scene

A single Scene , is represented by a single element of the array from the “scenes” key of the scene list.

• key – Scene Key value (UUID)

• name – Name of the Scene

• latitude – A float value representing the latitude of the Scene. Used for distance-based queries.

• longitude – A float value representing the longitude of the Scene. Used for distance-based queries.

• distance – A float value that is only required for distance based queries. With this, we can query Crazy Ivan for
scenes within a specific distance of a lat/long position.

• num_records – An Integer value which represents the maximum number of scenes that can be returned from a
query to Crazy Ivan

• devices – ID For the Scene containing the object

• region – The Region containing the Scene

• tags – String Tags which can be used to query for Scenes

• assets – ID’s for assets used for the Scene

14 Chapter 5. API Overview

CrazyIvan Documentation, Release 1.0.0

5.3 User Device

A single device is represented by a single element of the array from the “devices” key of the scene.

• key – Device Key value (UUID)

• hostname - The hostname of the device, for use in UDP communications

• port - The port of the device, for use in UDP communications

• connection_string - An optional additional connectivity string for UDP Communications

• transform – A transformation object which represents the transformation from the scene coordinate system to
the device coordinate system.

5.4 Transformation

A transformation is represented by the object in the “transform” key of the device.

• translation – An array of 3 floats representing x, y, and z values for a translation

• rotation – An array of 3 floats representing x, y, and z values for a local euler rotation

5.3. User Device 15

CrazyIvan Documentation, Release 1.0.0

16 Chapter 5. API Overview

CHAPTER 6

Field Mapping

Field Type Create Get Update Delete Register Leave Align
msg_type Integer X X X X X X X
err_code Integer
err_msg String
transaction_id String * * * * * * *
num_records String *
key (scene) String * X X X X X
name String X * * *
latitude Float X * * *
longitude Float X * * *
distance Float * *
region String * * * *
assets Array - String * * * *
tags Array - String * * * *
key (device) String X X X
connection_string String *
hostname String *
port Integer *
translation Array - Double * * *
rotation Array - Double * * *

X – Required

* - Optional

17

CrazyIvan Documentation, Release 1.0.0

18 Chapter 6. Field Mapping

CHAPTER 7

Message Types

7.1 Scene Create

Create a new Scene. Returns a unique key for the scene.

7.2 Scene Retrieve

The scene retrieve message will retrieve a scene by key, and return the full scene. It can also be used to run queries
against other scene attributes, as well as perform distance-based queries to find scenes within a certain radius of a
given lat/long coordinate.

7.3 Scene Update

Scene updates can be used to update scene attributes.

7.4 Scene Destroy

Destroy an existing Scene by key. Basic success/failure response.

7.5 Device Register

Register a device to a scene. If no transformation is supplied, then CrazyIvan will respond with an initial guess on
what the correct transform is.

19

CrazyIvan Documentation, Release 1.0.0

7.6 Device De-Register

De-Register a device to a scene.

7.7 Device Align

Apply a correction to the transformation currently stored between a scene and user device.

7.8 Device Retrieve

Retrieve the connectivity information of a user device.

20 Chapter 7. Message Types

CHAPTER 8

Appendix A: JSON Message Samples

8.1 Inbound

8.1.1 Scene Create

{ “msg_type”:0, “err_code”:100, “err_msg”:”Test”, “transaction_id”:”123465”, “scenes”:[

{ “key”:”jklmnop”, “name”:”Test Scene 10”, “latitude”:124.0, “longitude”:122.0, “distance”:100.0,
“region”:”TestRegion5”, “assets”:[“TestAsset10”], “tags”:[“Testing2”]

}

]

}

8.1.2 Scene Retrieve

{ “msg_type”:2, “transaction_id”:”123464”, “scenes”:[

{ “key”:”ijklmno”

}

]

}

8.1.3 Scene Update

{ “msg_type”:1, “err_code”:100, “err_msg”:”Test”, “transaction_id”:”123465”, “scenes”:[

{ “key”:”jklmnop”, “name”:”Test Scene 101”, “latitude”:126.0, “longitude”:129.0, “dis-
tance”:110.0, “region”:”TestRegion20”, “assets”:[“TestAsset20”], “tags”:[“Testing4”]

21

CrazyIvan Documentation, Release 1.0.0

}

]

}

8.1.4 Scene Destroy

{

“msg_type”:3,

“transaction_id”:”123464”,

“scenes”:[

{

“key”:”ijklmno”

}

]

}

8.1.5 Device Registration

{ “msg_type”:4, “err_code”:100, “err_msg”:”Test”, “transaction_id”:”123465”, “scenes”:[

{ “key”:”jklmnop”, “name”:”Test Scene 10”, “latitude”:124.0, “longitude”:122.0, “distance”:100.0,
“devices”:[

{ “key”:”Ud_132”, “transform”:{

“translation”:[1.0,1.0,1.0], “rotation”:[1.0,1.0,1.0]

}

}

]

}

]

}

8.1.6 Device De-Registration

{ “msg_type”:5, “err_code”:100, “err_msg”:”Test”, “transaction_id”:”123465”, “scenes”:[

{ “key”:”jklmnop”, “name”:”Test Scene 10”, “latitude”:124.0, “longitude”:122.0, “distance”:100.0,
“devices”:[

{ “key”:”Ud_132”, “transform”:{

“translation”:[1.0,1.0,1.0], “rotation”:[1.0,1.0,1.0]

}

}

22 Chapter 8. Appendix A: JSON Message Samples

CrazyIvan Documentation, Release 1.0.0

]

}

]

}

8.1.7 Device Alignment

{ “msg_type”:6, “err_code”:100, “err_msg”:”Test”, “transaction_id”:”123465”, “scenes”:[

{ “key”:”jklmnop”, “name”:”Test Scene 10”, “latitude”:124.0, “longitude”:122.0, “distance”:100.0,
“devices”:[

{ “key”:”Ud_132”, “transform”:{

“translation”:[6.0,1.0,1.0], “rotation”:[1.0,45.0,1.0]

}

}

]

}

]

}

8.1.8 Device Retrieval

{ “msg_type”:7, “err_code”:100, “err_msg”:”Test”, “transaction_id”:”123465”, “scenes”:[

{

“devices”:[

{ “key”:”Ud_132”

}

]

}

]

}

8.2 Response

8.2.1 Scene Create

{ “msg_type”:0, “err_code”:100, “num_records”:1, “scenes”:[

{ “key”:”ijklmno”, “latitude”:0.0, “longitude”:0.0, “distance”:0.0, “assets”:[], “tags”:[], “devices”:[]

}

]

8.2. Response 23

CrazyIvan Documentation, Release 1.0.0

}

8.2.2 Scene Retrieve

{ “msg_type”:2, “err_code”:100, “transaction_id”:”123465”, “num_records”:1, “scenes”:[

{ “key”:”jklmnop”, “name”:”Test Scene 10”, “region”:”TestRegion5”, “latitude”:124.0, “longi-
tude”:122.0, “distance”:0.0, “assets”:[], “tags”:[“Testing2”], “devices”:[]

}

]

}

8.2.3 Scene Update

{ “msg_type”:1, “err_code”:100, “num_records”:1, “scenes”:[

{ “key”:”ijklmno”, “latitude”:0.0, “longitude”:0.0, “distance”:0.0, “asset_ids”:[], “tags”:[], “de-
vices”:[]

}

]

}

8.2.4 Scene Destroy

{ “msg_type”:3, “err_code”:100, “num_records”:1, “scenes”:[

{ “key”:”hijklmn”, “latitude”:0.0, “longitude”:0.0, “distance”:0.0, “asset_ids”:[], “tags”:[], “de-
vices”:[]

}

]

}

8.2.5 Device Registration

{ “msg_type”:4, “err_code”:100, “transaction_id”:”123465”, “num_records”:1, “scenes”:[

{ “key”:”jklmnop”, “latitude”:0.0, “longitude”:0.0, “distance”:0.0, “asset_ids”:[], “tags”:[], “de-
vices”:[

{ “key”:”Ud_132”, “transform”:{“translation”:[0.0,0.0,0.0],”rotation”:[0.0,0.0,0.0]}

}

]

}

]

}

24 Chapter 8. Appendix A: JSON Message Samples

CrazyIvan Documentation, Release 1.0.0

8.2.6 Device De-Registration

{ “msg_type”:5, “err_code”:100, “transaction_id”:”123464”, “num_records”:1, “scenes”:[

{ “key”:”ijklmno”, “latitude”:0.0, “longitude”:0.0, “distance”:0.0, “asset_ids”:[], “tags”:[], “de-
vices”:[]

}

]

}

8.2.7 Device Alignment

{ “msg_type”:6, “err_code”:100, “transaction_id”:”123465”, “num_records”:1, “scenes”:[

{ “key”:”jklmnop”, “latitude”:0.0, “longitude”:0.0, “distance”:0.0, “asset_ids”:[], “tags”:[], “de-
vices”:[]

}

]

}

8.2.8 Device Retrieval

8.2. Response 25

CrazyIvan Documentation, Release 1.0.0

26 Chapter 8. Appendix A: JSON Message Samples

CHAPTER 9

Appendix B: Error Codes

const int NO_ERROR = 100

const int ERROR = 101

const int NOT_FOUND = 102

const int TRANSLATION_ERROR = 110

const int PROCESSING_ERROR = 120

const int BAD_MSG_TYPE_ERROR = 121

const int INSUFF_DATA_ERROR = 122

Go Home

27

CrazyIvan Documentation, Release 1.0.0

28 Chapter 9. Appendix B: Error Codes

CHAPTER 10

Deployment

Note: At this time, CrazyIvan has no built-in security or encryption mechanisms. Until such time, it is not recom-
mended to deploy CrazyIvan in Production.

The easiest methodology of deployment for CrazyIvan is using Docker. At this time, it has not been tested with either
Docker Compose or Docker Swarm.

This page will be updated after larger scale testing has been performed with CrazyIvan.

Go Home

29

CrazyIvan Documentation, Release 1.0.0

30 Chapter 10. Deployment

CHAPTER 11

Architecture

This is designed to be used as a microservice within a larger architecture. This will take in CRUD messages for scenes,
as well as track user device registrations.

A .proto file is included to allow generating the bindings for any language (the [protocol buffer compiler] (https:
//developers.google.com/protocol-buffers/) is installed by the build_deps script), which can be used to communicate
via protocol buffers.

Please note that running Crazy Ivan requires an instance of both Neo4j and Kafka to connect to in order to run.

Crazy Ivan can also be deployed with Consul as a Service Discovery and Distributed Configuration architecture. This
requires the Consul Agent to be deployed that Crazy Ivan can connect to.

31

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.neo4j.com/
http://kafka.apache.org/
https://www.consul.io/
https://www.consul.io/downloads.html

CrazyIvan Documentation, Release 1.0.0

32 Chapter 11. Architecture

CHAPTER 12

Design

In order to allow for real-time, distributed visualization, one of the key problems that needs to be solved is ensuring
that coordinate systems between various user devices and objects are synchronized. A key abstraction in this case is
a ‘Scene’ which is an arbitrary collection of objects and devices. A device can register/de-register from any scene, as
well as apply corrections to the coordinate system relationship between it and the scene it’s registered to.

This is done by storing relationships between scenes and devices, and then using these to build relationships between
scenes themselves. When devices move between these scenes, they will apply corrections. As they apply correc-
tions, we will build a set of known mappings between scenes which should allow users to move without needing any
corrections by returning the pre-calculated differences.

33

CrazyIvan Documentation, Release 1.0.0

34 Chapter 12. Design

CHAPTER 13

Object Change Streams

Object Change Streams ensure that all registered User Devices remain up to date about objects within their scenes.
Crazy Ivan monitors a Kafka Topic, which is populated by CLyman upon receipt of Object Updates. Crazy Ivan picks
up these messages and sends them out to the registered devices via UDP.

Go Home

35

CrazyIvan Documentation, Release 1.0.0

36 Chapter 13. Object Change Streams

CHAPTER 14

Dependencies

Go Home

CrazyIvan is built on top of the work of many others, and here you will find information on all of the libraries and
components that CrazyIvan uses to be successful.

Licenses for all dependencies can be found in the licenses folder within the repository.

14.1 CppKafka

CppKafka is a wrapper on top of librdkafka, which provides quick and easy access to pushing Kafka messages.

CppKafka is released under a BSD License.

14.2 ZeroMQ

Zero MQ is a lightweight messaging library that CrazyIvan uses to communicate. It is fast, versatile, and has bindings
for many major languages.

Zero MQ is released under an LGPL License.

14.3 CppZmq

CppZmq is the C++ binding for libzmq, which was written in C.

CppZmq is released under an MIT License.

37

https://github.com/mfontanini/cppkafka
https://github.com/mfontanini/cppkafka
http://zeromq.org/
http://zeromq.org/
https://github.com/zeromq/cppzmq
https://github.com/zeromq/cppzmq

CrazyIvan Documentation, Release 1.0.0

14.4 Log4cpp

Log4Cpp is a logging library based on Log4j.

Log4Cpp is released under an LGPL License.

14.5 Eigen

Eigen is a Linear Algebra library.

Eigen is released under an MPL License.

14.6 RapidJson

RapidJson is a very fast JSON parsing/writing library.

RapidJson is released under an MIT License.

14.7 AO Shared Service Library

AOSSL is a collection of C++ wrappers on many of the C libraries listed here.

AOSSL is released under an MIT License.

14.8 LibHiredis

LibHiredis is used to communicate with Redis, a distributed key-value store, and is a dependency of AOSSL

LibHiredis is released under a BSD License.

14.9 LibNeo4j

LibNeo4j is used to communicate with Neo4j, a Graph Based Database.

LibNeo4j is released under an Apache 2 License.

14.10 LibUUID

LibUUID is a linux utility for generating Universally Unique ID’s.

LibUUID is released under a BSD License.

38 Chapter 14. Dependencies

http://log4cpp.sourceforge.net/
http://log4cpp.sourceforge.net/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/miloyip/rapidjson
https://github.com/miloyip/rapidjson
https://github.com/AO-StreetArt/AOSharedServiceLibrary
https://github.com/AO-StreetArt/AOSharedServiceLibrary
https://github.com/redis/hiredis
https://github.com/redis/hiredis
https://github.com/cleishm/libneo4j-client/
https://github.com/cleishm/libneo4j-client/
https://sourceforge.net/projects/libuuid/
https://sourceforge.net/projects/libuuid/

CrazyIvan Documentation, Release 1.0.0

14.11 LibCurl

LibCurl is a ubiquitous networking library.

LibCurl is released under an MIT License.

14.12 LibProtobuf

LibProtobuf and the Protocol Buffer Compiler comprise a serialization system which CrazyIvan can use to communi-
cate in lieu of JSON. You can find more information about Protocol Buffers at the Google Developer Site

The Protocol Buffer License is unique yet very unrestrictive. For more information please see the license itself

14.13 DVS Interface

Finally, we also depend on the DVS Interface Library which houses a collection of .proto files for this project.

DVS Interface is released under an MIT License.

14.14 Automatic Dependency Resolution

For Ubuntu 16.04 & Debian 7, the build_deps.sh script should allow for automatic resolution of dependencies.

14.15 Other Acknowledgements

Here we will try to list authors of other public domain code that has been used:

René Nyffenegger - Base64 Decoding Methods

14.11. LibCurl 39

https://curl.haxx.se/libcurl/
https://curl.haxx.se/libcurl/
https://developers.google.com/protocol-buffers
https://github.com/google/protobuf/blob/master/LICENSE
https://github.com/AO-StreetArt/DvsInterface
https://github.com/AO-StreetArt/DvsInterface

CrazyIvan Documentation, Release 1.0.0

40 Chapter 14. Dependencies

CHAPTER 15

Developer Notes

This page contains a series of notes intended to be beneficial for any contributors to Crazy Ivan.

15.1 Development Docker Image

Generating a development Docker Image is made easy by the DebugDockerfile. This image is unique in that it does
not enter directly into Crazy Ivan, but rather installs all of the necessary dependencies and then waits.

First, execute the below command from the root folder of the project to build your local debug image: docker
build --no-cache --file DebugDockerfile -t "aostreetart/crazyivan:debug" .

Once this completes, run your image with the below command: docker run --name crazyivan -p
5555:5555 -d aostreetart/crazyivan:debug

You can update the port number to whatever you like, and keep in mind that you may also need to connect the con-
tainer to a docker network, depending on your configuration. For example: docker run --name crazyivan
--network=dvs -p 5555:5555 -d aostreetart/crazyivan:debug

Finally, you can open up a terminal within the box with: docker exec -i -t crazyivan /bin/bash

The container will have Crazy Ivan and all it’s dependencies pre-installed, so you can get right to work!

15.2 Generating Releases

The release_gen.sh script is utilized to generate releases for various systems. It accepts three command line arguments:
* the name of the release: crazyivan-os_name-os_version * the version of the release: we follow semantic versioning
* the location of the dependency script: current valid paths are linux/deb (uses apt-get) and linux/rhel (uses yum)

Read About Crazy Ivan Automated Testing

Go Home

41

http://semver.org/

CrazyIvan Documentation, Release 1.0.0

42 Chapter 15. Developer Notes

CHAPTER 16

Automated Testing

Crazy Ivan uses Travis CI for automated testing.

Within the Travis CI Configuration, several steps are executed to complete full functional testing:

• Set up Docker instances of Neo4j and Consul, and then populate the KV Store in Consul with several configu-
ration values.

• Build a new Docker Image for Crazy Ivan and start it.

• Download 0-Meter. This is a custom tool developed for 0MQ load testing, and is used to send a series of
messages to Crazy Ivan over the course of the tests. The configuration for 0-Meter CI Tests can be found in the
ci/ folder.

• Run 0-Meter to send a series of messages, some expected to fail and others to succeed, to Crazy Ivan. Validate
the err_code field in the response.

• If all tests pass, then push the newly built image to Docker Hub.

Note that unit tests are performed within the Dockerfile itself, so that the Docker build will fail if any unit tests fail. If
you are adding unit tests to Crazy Ivan, you should add them within the Dockerfile as well.

Go Home

43

https://travis-ci.org/AO-StreetArt/CrazyIvan
https://www.docker.com/
https://neo4j.com/
https://www.consul.io/
https://www.consul.io/
https://www.docker.com/
https://github.com/AO-StreetArt/0-Meter
https://github.com/AO-StreetArt/0-Meter
https://hub.docker.com/r/aostreetart/crazyivan/

CrazyIvan Documentation, Release 1.0.0

44 Chapter 16. Automated Testing

CHAPTER 17

Crazy Ivan

17.1 Overview

Crazy Ivan is a service designed to store ‘scenes’, which means an arbitrary collection of objects in 3-space within a
geographic area. Devices can register/de-register from scenes as they move through the world, and as they do we build
a network of relationships that can be used to determine the transformations needed for other devices.

Crazy Ivan also serves as a UDP Server, communicating Object Change Streams to registered devices.

Detailed documentation can be found on ReadTheDocs.

17.2 Features

• Storage of Scenes (Groups of virtual objects & user devices associated to a latitude/longitude)

• Efficient calculation of coordinate system transformations based on existing data

• Means to store manual corrections from users

• Connect to other services over Zero MQ using Google Protocol Buffers.

• Scalable microservice design

Crazy Ivan is a part of the AO Aesel Project, along with CLyman. It therefore utilizes the DVS Interface library, also
available on github. It utilizes the Scene.proto file for inbound communications.

Stuck and need help? Have general questions about the application? Reach out to the development team at crazyi-
van@emaillist.io

45

http://crazyivan.readthedocs.io/en/latest/index.html
https://github.com/AO-StreetArt/CLyman
https://github.com/AO-StreetArt/DvsInterface
mailto:crazyivan@emaillist.io
mailto:crazyivan@emaillist.io

	Docker
	Using the Latest Release
	Building from Source
	Configuration
	API Overview
	Field Mapping
	Message Types
	Appendix A: JSON Message Samples
	Appendix B: Error Codes
	Deployment
	Architecture
	Design
	Object Change Streams
	Dependencies
	Developer Notes
	Automated Testing
	Crazy Ivan

