

Contents:

	Getting Started with CrazyIvan

	Configuration

	API Overview

	Field Mapping

	Message Types

	Appendix A: JSON Message Samples

	Appendix B: Error Codes

	Deployment

	Architecture

	Design

	Object Change Streams

	Dependencies

	Developer Notes

	Automated Testing

Crazy Ivan

[image:]

Overview

Crazy Ivan is a service designed to store ‘scenes’, which means an arbitrary collection
of objects in 3-space within a geographic area. Devices can register/de-register
from scenes as they move through the world, and as they do we build a network of
relationships that can be used to determine the transformations needed for other devices.

Crazy Ivan also serves as a UDP Server, communicating Object Change Streams to registered
devices.

Detailed documentation can be found on ReadTheDocs [http://crazyivan.readthedocs.io/en/latest/index.html].

Features

	Storage of Scenes (Groups of virtual objects & user devices associated to a latitude/longitude)

	Efficient calculation of coordinate system transformations based on existing data

	Means to store manual corrections from users

	Connect to other services over Zero MQ using Google Protocol Buffers.

	Scalable microservice design

Crazy Ivan is a part of the AO Aesel Project, along
with CLyman [https://github.com/AO-StreetArt/CLyman]. It therefore
utilizes the DVS Interface
library [https://github.com/AO-StreetArt/DvsInterface], also
available on github. It utilizes the Scene.proto file for inbound
communications.

Stuck and need help? Have general questions about the application? Reach out to the development team at crazyivan@emaillist.io

Getting Started with CrazyIvan

Go Home

Docker

The easiest way to get started with CrazyIvan is with Docker [https://docs.docker.com/get-started/]

If you do not have Docker installed, please visit the link above to get setup before continuing.

The first thing we need to do is setup the Docker Network that will allow us to communicate between our containers:

docker network create dvs

Before we can start CrazyIvan, we need to have a few other programs running first.
Luckily, these can all be setup with Docker as well:

docker run -d --name=registry --network=dvs consul

docker run -d --publish=7474:7474 --publish=7687:7687 --env=NEO4J_AUTH=none --volume=$HOME/neo4j/data:/data --network=dvs --name=database neo4j

docker run -i -t -d -p 2181:2181 -p 9092:9092 --env ADVERTISED_PORT=9092 --env ADVERTISED_HOST=queue --name=queue --network=dvs spotify/kafka

This will start up a single instance each of Neo4j, Kafka, and Consul. Consul stores our configuration values, so we’ll need to set those up.
You can either view the Consul Documentation [https://www.consul.io/intro/getting-started/ui.html] for information on starting the container with a Web UI, or you can use the commands below for a quick-and-dirty setup:

docker exec -t registry curl -X PUT -d 'neo4j://graph-db:7687' http://localhost:8500/v1/kv/ivan/DB_ConnectionString

docker exec -t registry curl -X PUT -d 'queue:9092' http://localhost:8500/v1/kv/ivan/KafkaBrokerAddress

docker exec -t registry curl -X PUT -d 'True' http://localhost:8500/v1/kv/ivan/StampTransactionId

docker exec -t registry curl -X PUT -d 'Json' http://localhost:8500/v1/kv/ivan/Data_Format_Type

Then, we can start up CrazyIvan:

docker run --name crazyivan --network=dvs -p 5555:5555 -d aostreetart/crazyivan -consul-addr=registry:8500 -ip=localhost -port=5555 -log-conf=CrazyIvan/log4cpp.properties

This will start an instance of CrazyIvan with the following properties:

	Connected to network ‘dvs’, which lets us refer to the other containers in the network by name when connecting.

	Listening on localhost port 5555

	Connected to Consul Container

We can open up a terminal within the container by:

docker exec -i -t crazyivan /bin/bash

The ‘stop_crazyivan.py’ script is provided as an easy way to stop CrazyIvan running as
a service. This can be executed with:

python stop_crazyivan.py hostname port

For a more detailed discussion on the deployment of CrazyIvan, please see
the Deployment Section
of the documentation.

Using the Latest Release

In order to use the latest release, you will still need to start up the
applications used by CrazyIvan, namely Neo4j, Kafka, and Consul. This can be done
using the docker instructions above, or by installing each to the system manually.
Instructions:
* Neo4j [https://neo4j.com/developer/get-started/]
* Consul [https://www.consul.io/intro/getting-started/install.html]

Then, download the latest release from the Releases Page [https://github.com/AO-StreetArt/CrazyIvan/releases]

Currently, pre-built binaries are available for:

	Ubuntu 16.04

	CentOS7

Unzip/untar the release file and enter into the directory. Then, we will use the
easy_install.sh script to install CrazyIvan. Running the below will attempt to install
the dependencies, and then install the CrazyIvan executable:

sudo ./easy_install.sh -d

If you’d rather not automatically install dependencies, and only install the executable,
then you can simply leave off the ‘-d’ flag. Additionally, you may supply
a ‘-r’ flag to uninstall CrazyIvan:

sudo ./easy_install -r

Once the script is finished installing CrazyIvan, you can start CrazyIvan with:

sudo systemctl start crazyivan.service

The ‘stop_crazyivan.py’ script is provided as an easy way to stop CrazyIvan running as
a service. This can be executed with:

python stop_crazyivan.py hostname port

Note: The CrazyIvan configuration files can be found at /etc/crazyivan, and the log files
can be found at /var/log/crazyivan.

Building from Source

The recommended system for development of CrazyIvan is either
Ubuntu 16.04 or CentOS7. You will need gcc 5.0 or greater installed to
successfully compile the program.

git clone https://github.com/AO-StreetArt/CrazyIvan.git

mkdir crazyivan_deps

cp CrazyIvan/scripts/linux/deb/build_deps.sh crazyivan_deps/build_deps.sh

cd crazyivan_deps

./build_deps.sh

You will be asked once for your sudo password.

cd ../CrazyIvan

make

This will result in creation of the crazy_ivan executable, which we can run
with the below command:

./crazy_ivan

When not supplied with any command line parameters, CrazyIvan will look for an ivan.properties file and log4cpp.properties file to start from.

You may also build the test modules with:

make tests

In order to run CrazyIvan from a properties file, you will need:

	You will also need to have a Neo4j Server installed locally. Instructions
can be found at https://neo4j.com/developer/get-started/

Continue on to the Configuration Section for more details
on the configuration options available when starting CrazyIvan.

Configuration

Properties File

Crazy Ivan can be configured via a properties file, which has a few
command line options:

	./crazy_ivan - This will start Crazy Ivan with the default
properties file, ivan.properties

	./crazy_ivan -config-file=file.properties - This will start Crazy
Ivan with the properties file, file.properties. Can be combined with
-log-conf.

	./crazy_ivan -log-conf=logging.properties - This will start Crazy
Ivan with the logging properties file, logging.properties. Can be
combined with -config-file.

The properties file can be edited in any text editor.

Consul

Crazy Ivan can also be configured via a Consul Connection, in which we
must specify the address of the consul agent, and the ip & port of the
Inbound ZeroMQ Connection.

	./crazy_ivan -consul-addr=localhost:8500 -ip=localhost -port=5555
- Start Crazy Ivan, register as a service with consul, and configure
based on configuration values in Consul, and bind to an internal 0MQ
port on localhost

	./crazy_ivan -consul-addr=localhost:8500 -ip=tcp://my.ip -port=5555 -log-conf=logging.properties
- Start Crazy Ivan, register as a service with consul, and configure
based on configuration values in Consul. Bind to an external 0MQ port
on tcp://my.ip, and configure from the logging configuration file,
logging.properties.

We can also use both a properties file and a Consul connection, in which case
the properties file is used to define the ip and port of the inbound ZeroMQ connection,
while Consul is used for registration and all other configuration retrieval.

	./crazy_ivan -consul-addr=localhost:8500 -config-file=file.properties

When configuring from Consul the keys of the properties file are equal
to the expected keys in Consul.

Logging

The Logging Configuration File can also be edited with a text file, and
the documentation for this can be found [here]
(http://log4cpp.sourceforge.net/api/classlog4cpp_1_1PropertyConfigurator.html).
Note that logging configuration is not yet in Consul, and always exists
in a properties file.

Two logging configuration files are provided, one for logging to the
console and to a file (log4cpp.properties), and another to log to syslog
and to a file (log4cpp_syslog.properties). Both show all of the logging
modules utilized by Crazy Ivan during all phases of execution, and all
of these should be configured with the same names (for example,
log4cpp.category.main).

Crazy Ivan is built with many different logging modules, so that
configuration values can change the log level for any given module, the
log file of any given module, or shift any given module to a different
appender or pattern entirely. These modules should always be present
within configuration files, but can be configured to suit the particular
deployment needs.

Startup

Crazy Ivan can be started with an option to wait for a specified number of
seconds prior to looking for configuration values and opening up for requests.
This is particularly useful when used with orchestration providers, in order
to ensure that other components are properly started (in particular, in order
to allow time for Consul to be populated with default configuration values).

	./crazy_ivan -wait=5 - This will start Crazy Ivan with the default
properties file, and wait 5 seconds before starting.

Configuration Key-Value Variables

Below you can find a summary of the options in the Properties File or
Consul Key-Value Store:

DB

	DB_ConnectionString - The string used to connect to the Neo4j
instance (example: neo4j://neo4j:neo4j@localhost:7687)

0MQ

	0MQ_InboundConnectionString - The connectivity string for the
inbound 0MQ Port

Kafka Connection

	KafkaBrokerAddress - The address of the Kafka connection to monitor

Behavior

	StampTransactionId - True to stamp Transaction ID’s on messages,
False if not. Transaction ID’s are passed on Inbound Responses and
Outbound messages, in order to link the two together.

	Data_Format_Type - JSON to accept JSON messages, protobuf to
accept protocol buffer messages

Go Home

API Overview

The CrazyIvan API utilizes either JSON or Protocol Buffers, based on
what the server is configured to process. In either case, the field
names and message structure remains the same. This document will focus
on the JSON API, but with this knowledge and the DVS Interface Protocol
Buffer files, the use of the Protocol Buffer API should be equally
clear.

Response Messages follow the same format as inbound messages.

To start with, here is an example JSON message which will create a
single scene, and register a user device to it:

{

“msg_type”:4,

“transaction_id”:”123465”,

“scenes”:[

{

“key”:”jklmnop”,

“name”:”Test Scene 10”,

“latitude”:124.0,

“longitude”:122.0,

“distance”:100.0,

“region”:”Test Region”,

“assets”:[“Test Asset 1”, “Test Asset 2”],

“tags”:[“Test Tag 1”, “Test Tag 2”],

“devices”:[

{

“key”:”Ud_132”,

“transform”:{

“translation”:[1.0,1.0,1.0],

“rotation”:[1.0,1.0,1.0]

}

}

]

}

]

}

Let’s take a look at the individual fields.

Scene List

The Scene List is the highest level wrapper in the API. It only contains
5 keys, one of which is an array of scenes.

	msg_type – 0 for create scene, 1 for update scene, 2 for
retrieve/query scene(s), 3 for delete scene, 4 for device
registration, 5 for device de-registration, and 6 for device
alignment. The message type applies to all objects in the objects
array.

	transaction_id – An ID to distinguish a transaction within a larger
network of applications

	scenes – An array containing scenes

	err_code – Integer error code, full list of values can be found
below in the appendix

	err_msg – A string error message, containing a human-readable
description of the issue

Scene

A single Scene , is represented by a single element of the array from
the “scenes” key of the scene list.

	key – Scene Key value (UUID)

	name – Name of the Scene

	latitude – A float value representing the latitude of the Scene. Used
for distance-based queries.

	longitude – A float value representing the longitude of the Scene.
Used for distance-based queries.

	distance – A float value that is only required for distance based
queries. With this, we can query Crazy Ivan for scenes within a
specific distance of a lat/long position.

	num_records – An Integer value which represents the maximum number
of scenes that can be returned from a query to Crazy Ivan

	devices – ID For the Scene containing the object

	region – The Region containing the Scene

	tags – String Tags which can be used to query for Scenes

	assets – ID’s for assets used for the Scene

User Device

A single device is represented by a single element of the array from the
“devices” key of the scene.

	key – Device Key value (UUID)

	hostname - The hostname of the device, for use in UDP communications

	port - The port of the device, for use in UDP communications

	connection_string - An optional additional connectivity string for UDP Communications

	transform – A transformation object which represents the
transformation from the scene coordinate system to the device
coordinate system.

Transformation

A transformation is represented by the object in the “transform” key of
the device.

	translation – An array of 3 floats representing x, y, and z values
for a translation

	rotation – An array of 3 floats representing x, y, and z values for a
local euler rotation

Field Mapping

	Field

	Type

	Create

	Get

	Update

	Delete

	Register

	Leave

	Align

	msg_type

	Integer

	X

	X

	X

	X

	X

	X

	X

	err_code

	Integer

	
	
	
	
	
	
	

	err_msg

	String

	
	
	
	
	
	
	

	transaction_id

	String

	*

	*

	*

	*

	*

	*

	*

	num_records

	String

	
	*

	
	
	
	
	

	key (scene)

	String

	
	*

	X

	X

	X

	X

	X

	name

	String

	X

	*

	*

	
	*

	
	

	latitude

	Float

	X

	*

	*

	
	*

	
	

	longitude

	Float

	X

	*

	*

	
	*

	
	

	distance

	Float

	
	*

	*

	
	
	
	

	region

	String

	*

	*

	*

	
	*

	
	

	assets

	Array - String

	*

	*

	*

	
	*

	
	

	tags

	Array - String

	*

	*

	*

	
	*

	
	

	key (device)

	String

	
	
	
	
	X

	X

	X

	connection_string

	String

	
	
	
	
	*

	
	

	hostname

	String

	
	
	
	
	*

	
	

	port

	Integer

	
	
	
	
	*

	
	

	translation

	Array - Double

	
	
	
	
	*

	*

	*

	rotation

	Array - Double

	
	
	
	
	*

	*

	*

X – Required

* - Optional

Message Types

Scene Create

Create a new Scene. Returns a unique key for the scene.

Scene Retrieve

The scene retrieve message will retrieve a scene by key, and return the
full scene. It can also be used to run queries against other scene
attributes, as well as perform distance-based queries to find scenes
within a certain radius of a given lat/long coordinate.

Scene Update

Scene updates can be used to update scene attributes.

Scene Destroy

Destroy an existing Scene by key. Basic success/failure response.

Device Register

Register a device to a scene. If no transformation is supplied, then
CrazyIvan will respond with an initial guess on what the correct
transform is.

Device De-Register

De-Register a device to a scene.

Device Align

Apply a correction to the transformation currently stored between a
scene and user device.

Device Retrieve

Retrieve the connectivity information of a user device.

Appendix A: JSON Message Samples

Inbound

Scene Create

	{

	“msg_type”:0,
“err_code”:100,
“err_msg”:”Test”,
“transaction_id”:”123465”,
“scenes”:[

	{

	“key”:”jklmnop”,
“name”:”Test Scene 10”,
“latitude”:124.0,
“longitude”:122.0,
“distance”:100.0,
“region”:”TestRegion5”,
“assets”:[“TestAsset10”],
“tags”:[“Testing2”]

}

]

}

Scene Retrieve

	{

	“msg_type”:2,
“transaction_id”:”123464”,
“scenes”:[

	{

	“key”:”ijklmno”

}

]

}

Scene Update

	{

	“msg_type”:1,
“err_code”:100,
“err_msg”:”Test”,
“transaction_id”:”123465”,
“scenes”:[

	{

	“key”:”jklmnop”,
“name”:”Test Scene 101”,
“latitude”:126.0,
“longitude”:129.0,
“distance”:110.0,
“region”:”TestRegion20”,
“assets”:[“TestAsset20”],
“tags”:[“Testing4”]

}

]

}

Scene Destroy

{

“msg_type”:3,

“transaction_id”:”123464”,

“scenes”:[

{

“key”:”ijklmno”

}

]

}

Device Registration

	{

	“msg_type”:4,
“err_code”:100,
“err_msg”:”Test”,
“transaction_id”:”123465”,
“scenes”:[

	{

	“key”:”jklmnop”,
“name”:”Test Scene 10”,
“latitude”:124.0,
“longitude”:122.0,
“distance”:100.0,
“devices”:[

	{

	“key”:”Ud_132”,
“transform”:{

“translation”:[1.0,1.0,1.0],
“rotation”:[1.0,1.0,1.0]

}

}

]

}

]

}

Device De-Registration

	{

	“msg_type”:5,
“err_code”:100,
“err_msg”:”Test”,
“transaction_id”:”123465”,
“scenes”:[

	{

	“key”:”jklmnop”,
“name”:”Test Scene 10”,
“latitude”:124.0,
“longitude”:122.0,
“distance”:100.0,
“devices”:[

	{

	“key”:”Ud_132”,
“transform”:{

“translation”:[1.0,1.0,1.0],
“rotation”:[1.0,1.0,1.0]

}

}

]

}

]

}

Device Alignment

	{

	“msg_type”:6,
“err_code”:100,
“err_msg”:”Test”,
“transaction_id”:”123465”,
“scenes”:[

	{

	“key”:”jklmnop”,
“name”:”Test Scene 10”,
“latitude”:124.0,
“longitude”:122.0,
“distance”:100.0,
“devices”:[

	{

	“key”:”Ud_132”,
“transform”:{

“translation”:[6.0,1.0,1.0],
“rotation”:[1.0,45.0,1.0]

}

}

]

}

]

}

Device Retrieval

	{

	“msg_type”:7,
“err_code”:100,
“err_msg”:”Test”,
“transaction_id”:”123465”,
“scenes”:[

	{

	
	“devices”:[

	
	{

	“key”:”Ud_132”

}

]

}

]

}

Response

Scene Create

	{

	“msg_type”:0,
“err_code”:100,
“num_records”:1,
“scenes”:[

	{

	“key”:”ijklmno”,
“latitude”:0.0,
“longitude”:0.0,
“distance”:0.0,
“assets”:[],
“tags”:[],
“devices”:[]

}

]

}

Scene Retrieve

	{

	“msg_type”:2,
“err_code”:100,
“transaction_id”:”123465”,
“num_records”:1,
“scenes”:[

	{

	“key”:”jklmnop”,
“name”:”Test Scene 10”,
“region”:”TestRegion5”,
“latitude”:124.0,
“longitude”:122.0,
“distance”:0.0,
“assets”:[],
“tags”:[“Testing2”],
“devices”:[]

}

]

}

Scene Update

	{

	“msg_type”:1,
“err_code”:100,
“num_records”:1,
“scenes”:[

	{

	“key”:”ijklmno”,
“latitude”:0.0,
“longitude”:0.0,
“distance”:0.0,
“asset_ids”:[],
“tags”:[],
“devices”:[]

}

]

}

Scene Destroy

	{

	“msg_type”:3,
“err_code”:100,
“num_records”:1,
“scenes”:[

	{

	“key”:”hijklmn”,
“latitude”:0.0,
“longitude”:0.0,
“distance”:0.0,
“asset_ids”:[],
“tags”:[],
“devices”:[]

}

]

}

Device Registration

	{

	“msg_type”:4,
“err_code”:100,
“transaction_id”:”123465”,
“num_records”:1,
“scenes”:[

	{

	“key”:”jklmnop”,
“latitude”:0.0,
“longitude”:0.0,
“distance”:0.0,
“asset_ids”:[],
“tags”:[],
“devices”:[

	{

	“key”:”Ud_132”,
“transform”:{“translation”:[0.0,0.0,0.0],”rotation”:[0.0,0.0,0.0]}

}

]

}

]

}

Device De-Registration

	{

	“msg_type”:5,
“err_code”:100,
“transaction_id”:”123464”,
“num_records”:1,
“scenes”:[

	{

	“key”:”ijklmno”,
“latitude”:0.0,
“longitude”:0.0,
“distance”:0.0,
“asset_ids”:[],
“tags”:[],
“devices”:[]

}

]

}

Device Alignment

	{

	“msg_type”:6,
“err_code”:100,
“transaction_id”:”123465”,
“num_records”:1,
“scenes”:[

	{

	“key”:”jklmnop”,
“latitude”:0.0,
“longitude”:0.0,
“distance”:0.0,
“asset_ids”:[],
“tags”:[],
“devices”:[]

}

]

}

Device Retrieval

Appendix B: Error Codes

const int NO_ERROR = 100

const int ERROR = 101

const int NOT_FOUND = 102

const int TRANSLATION_ERROR = 110

const int PROCESSING_ERROR = 120

const int BAD_MSG_TYPE_ERROR = 121

const int INSUFF_DATA_ERROR = 122

Go Home

Deployment

Note: At this time, CrazyIvan has no built-in security or encryption mechanisms. Until such time, it is not recommended to deploy CrazyIvan in Production.

The easiest methodology of deployment for CrazyIvan is using Docker. At this time, it has not been tested with either Docker Compose or Docker Swarm.

This page will be updated after larger scale testing has been performed with CrazyIvan.

Go Home

Architecture

This is designed to be used as a microservice within a larger
architecture. This will take in CRUD messages for scenes, as well as
track user device registrations.

A .proto file is included to allow generating the bindings for any
language (the [protocol buffer compiler]
(https://developers.google.com/protocol-buffers/) is installed by the
build_deps script), which can be used to communicate via protocol
buffers.

Please note that running Crazy Ivan requires an instance of both
Neo4j [http://www.neo4j.com/] and Kafka [http://kafka.apache.org/]
to connect to in order to run.

Crazy Ivan can also be deployed with Consul [https://www.consul.io/]
as a Service Discovery and Distributed Configuration architecture. This
requires the Consul Agent [https://www.consul.io/downloads.html] to
be deployed that Crazy Ivan can connect to.

Design

In order to allow for real-time, distributed visualization, one of the
key problems that needs to be solved is ensuring that coordinate systems
between various user devices and objects are synchronized. A key abstraction in
this case is a ‘Scene’ which is an arbitrary collection of objects and devices.
A device can register/de-register from any scene, as well as apply corrections
to the coordinate system relationship between it and the scene it’s registered to.

This is done by storing relationships between scenes and devices, and then using
these to build relationships between scenes themselves. When devices move between
these scenes, they will apply corrections. As they apply corrections, we will
build a set of known mappings between scenes which should allow users to move without
needing any corrections by returning the pre-calculated differences.

Object Change Streams

Object Change Streams ensure that all registered User Devices remain up to date about
objects within their scenes. Crazy Ivan monitors a Kafka Topic, which is populated by
CLyman upon receipt of Object Updates. Crazy Ivan picks up these messages and sends
them out to the registered devices via UDP.

Go Home

Dependencies

Go Home

CrazyIvan is built on top of the work of many others, and here you will find information
on all of the libraries and components that CrazyIvan uses to be successful.

Licenses for all dependencies can be found in the licenses folder within the repository.

CppKafka

CppKafka [https://github.com/mfontanini/cppkafka] is a wrapper on top of librdkafka,
which provides quick and easy access to pushing Kafka messages.

CppKafka [https://github.com/mfontanini/cppkafka] is released under a BSD License.

ZeroMQ

Zero MQ [http://zeromq.org/] is a lightweight messaging library that CrazyIvan uses to communicate. It is
fast, versatile, and has bindings for many major languages.

Zero MQ [http://zeromq.org/] is released under an LGPL License.

CppZmq

CppZmq [https://github.com/zeromq/cppzmq] is the C++ binding for libzmq, which was written in C.

CppZmq [https://github.com/zeromq/cppzmq] is released under an MIT License.

Log4cpp

Log4Cpp [http://log4cpp.sourceforge.net/] is a logging library based on Log4j.

Log4Cpp [http://log4cpp.sourceforge.net/] is released under an LGPL License.

Eigen

Eigen [http://eigen.tuxfamily.org/index.php?title=Main_Page] is a Linear Algebra library.

Eigen [http://eigen.tuxfamily.org/index.php?title=Main_Page] is released under an MPL License.

RapidJson

RapidJson [https://github.com/miloyip/rapidjson] is a very fast JSON parsing/writing library.

RapidJson [https://github.com/miloyip/rapidjson] is released under an MIT License.

AO Shared Service Library

AOSSL [https://github.com/AO-StreetArt/AOSharedServiceLibrary] is a collection
of C++ wrappers on many of the C libraries listed here.

AOSSL [https://github.com/AO-StreetArt/AOSharedServiceLibrary] is released under an MIT License.

LibHiredis

LibHiredis [https://github.com/redis/hiredis] is used to communicate with Redis, a distributed key-value store, and is a dependency of AOSSL

LibHiredis [https://github.com/redis/hiredis] is released under a BSD License.

LibNeo4j

LibNeo4j [https://github.com/cleishm/libneo4j-client/] is used to communicate with Neo4j, a Graph Based Database.

LibNeo4j [https://github.com/cleishm/libneo4j-client/] is released under an Apache 2 License.

LibUUID

LibUUID [https://sourceforge.net/projects/libuuid/] is a linux utility for generating Universally Unique ID’s.

LibUUID [https://sourceforge.net/projects/libuuid/] is released under a BSD License.

LibCurl

LibCurl [https://curl.haxx.se/libcurl/] is a ubiquitous networking library.

LibCurl [https://curl.haxx.se/libcurl/] is released under an MIT License.

LibProtobuf

LibProtobuf and the Protocol Buffer Compiler comprise a serialization system which
CrazyIvan can use to communicate in lieu of JSON. You can find more information about
Protocol Buffers at the Google Developer Site [https://developers.google.com/protocol-buffers]

The Protocol Buffer License is unique yet very unrestrictive. For more information please see the
license itself [https://github.com/google/protobuf/blob/master/LICENSE]

DVS Interface

Finally, we also depend on the DVS Interface Library [https://github.com/AO-StreetArt/DvsInterface]
which houses a collection of .proto files for this project.

DVS Interface [https://github.com/AO-StreetArt/DvsInterface] is released under an MIT License.

Automatic Dependency Resolution

For Ubuntu 16.04 & Debian 7, the build_deps.sh script should allow for
automatic resolution of dependencies.

Other Acknowledgements

Here we will try to list authors of other public domain code that has been used:

René Nyffenegger - Base64 Decoding Methods

Developer Notes

This page contains a series of notes intended to be beneficial for any contributors to Crazy Ivan.

Development Docker Image

Generating a development Docker Image is made easy by the DebugDockerfile.
This image is unique in that it does not enter directly into Crazy Ivan, but
rather installs all of the necessary dependencies and then waits.

First, execute the below command from the root folder of the project to build your local debug image:
docker build --no-cache --file DebugDockerfile -t "aostreetart/crazyivan:debug" .

Once this completes, run your image with the below command:
docker run --name crazyivan -p 5555:5555 -d aostreetart/crazyivan:debug

You can update the port number to whatever you like, and keep in mind that you may
also need to connect the container to a docker network, depending on your configuration.
For example:
docker run --name crazyivan --network=dvs -p 5555:5555 -d aostreetart/crazyivan:debug

Finally, you can open up a terminal within the box with:
docker exec -i -t crazyivan /bin/bash

The container will have Crazy Ivan and all it’s dependencies pre-installed, so you can get right to work!

Generating Releases

The release_gen.sh script is utilized to generate releases for various systems.
It accepts three command line arguments:
* the name of the release: crazyivan-os_name-os_version
* the version of the release: we follow semantic versioning [http://semver.org/]
* the location of the dependency script: current valid paths are linux/deb (uses apt-get) and linux/rhel (uses yum)

Read About Crazy Ivan Automated Testing

Go Home

Automated Testing

Crazy Ivan uses Travis CI [https://travis-ci.org/AO-StreetArt/CrazyIvan] for automated testing.

Within the Travis CI Configuration, several steps are executed to complete full functional testing:

	Set up Docker [https://www.docker.com/] instances of Neo4j [https://neo4j.com/] and Consul [https://www.consul.io/], and then populate the KV Store in Consul [https://www.consul.io/] with several configuration values.

	Build a new Docker [https://www.docker.com/] Image for Crazy Ivan and start it.

	Download 0-Meter [https://github.com/AO-StreetArt/0-Meter]. This is a custom tool developed for 0MQ load testing, and is used to send a series of messages to Crazy Ivan over the course of the tests. The configuration for 0-Meter CI Tests can be found in the ci/ folder.

	Run 0-Meter [https://github.com/AO-StreetArt/0-Meter] to send a series of messages, some expected to fail and others to succeed, to Crazy Ivan. Validate the err_code field in the response.

	If all tests pass, then push the newly built image to Docker Hub [https://hub.docker.com/r/aostreetart/crazyivan/].

Note that unit tests are performed within the Dockerfile itself, so that the Docker build will fail if any unit tests fail. If you are adding unit tests to Crazy Ivan, you should add them within the Dockerfile as well.

Go Home

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Crazy Ivan

 		
 Getting Started with CrazyIvan

 		
 Docker

 		
 Using the Latest Release

 		
 Building from Source

 		
 Configuration

 		
 Properties File

 		
 Consul

 		
 Logging

 		
 Startup

 		
 Configuration Key-Value Variables

 		
 DB

 		
 0MQ

 		
 Kafka Connection

 		
 Behavior

 		
 API Overview

 		
 Scene List

 		
 Scene

 		
 User Device

 		
 Transformation

 		
 Field Mapping

 		
 Message Types

 		
 Scene Create

 		
 Scene Retrieve

 		
 Scene Update

 		
 Scene Destroy

 		
 Device Register

 		
 Device De-Register

 		
 Device Align

 		
 Device Retrieve

 		
 Appendix A: JSON Message Samples

 		
 Inbound

 		
 Scene Create

 		
 Scene Retrieve

 		
 Scene Update

 		
 Scene Destroy

 		
 Device Registration

 		
 Device De-Registration

 		
 Device Alignment

 		
 Device Retrieval

 		
 Response

 		
 Scene Create

 		
 Scene Retrieve

 		
 Scene Update

 		
 Scene Destroy

 		
 Device Registration

 		
 Device De-Registration

 		
 Device Alignment

 		
 Device Retrieval

 		
 Appendix B: Error Codes

 		
 Deployment

 		
 Architecture

 		
 Design

 		
 Object Change Streams

 		
 Dependencies

 		
 CppKafka

 		
 ZeroMQ

 		
 CppZmq

 		
 Log4cpp

 		
 Eigen

 		
 RapidJson

 		
 AO Shared Service Library

 		
 LibHiredis

 		
 LibNeo4j

 		
 LibUUID

 		
 LibCurl

 		
 LibProtobuf

 		
 DVS Interface

 		
 Automatic Dependency Resolution

 		
 Other Acknowledgements

 		
 Developer Notes

 		
 Development Docker Image

 		
 Generating Releases

 		
 Automated Testing

_static/ajax-loader.gif

